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1 Introduction

Hierarchical Deterministic Wallets (HD wallets, for short) in the cryptocurrency
domain derive from the BIP32 specification1 The motivation behind creating this
type of wallets is clear if one thinks about how typical cryptocurrency systems
work: each address is associated with a key pair and, in order to achieve high
security and privacy levels, it is best to limit the reusage of addresses (thus, key
pairs). Therefore, a too high number of needed key pairs is quickly reached. If
each key is generated independently at random, management becomes too com-
plex – especially, if several devices are expected to be synchronised. As a solution
to this challenge, a hierachical tree-based data structure was proposed, in which
each parent node can be used to derive multiple child nodes, deterministically.
This approach seems also useful to foster some sort of separation – i.e., create
sub-trees that are (computationally) independent from one another, in the sense
that a compromise in one does not lead to a compromise in the other. Typically,
the root node of the tree is derived from a seed encoded as a mnemonic. BIP392

is the main specification for this latter purpose.

1.1 Preliminaries

In the sequel, the processes that compose an (BIP44-compliant) HD wallet are
described, including high-level cryptographic algorithms. For the sake of read-
ability of non-cryptography savvy audience, we give informal descriptions of the
cryptographic concepts and schemes mentioned next.

1 https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki. Last ac-
cess, December 13th, 2021.

2 https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki. Last ac-
cess, December 13th, 2021.
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Signature schemes. A signature scheme uses an asymmetric key pair, composed
of a public key and a private key (also frequently referred to as verification
key and signing key, respectively). Intuitively, the owner of the signing key can
produce a digital signature over arbitrary messages, which can be verified by
anyone with the verification key, which is frequently somehow made publicly
accessible. Secure signature schemes ensure that only the owner of the signing
key can produce signatures verifiable with the corresponding verifying key. In
the HD wallets studied next, typical signing algorithms are ECDSA and EdDSA.

HMACs and HKDFs. A Hash-based Message Authentication Code scheme is a
concrete approach to build MAC functions, using cryptographic hashes as main
building block. A MAC function is a kind of symmetric equivalent to digital sig-
nature – i.e., it relies on a shared secret rather than on an asymmetric key pair.
HMACs have been proved to be secure pseudo random number generators [1],
which is a useful building block to build secure HKDFs [7], or Hash-based Key
Derivation Functions. Specifically, an HKDF, as defined in [7], can be applied
to produce secure cryptographic keys from low entropy sources, by applying a
two-phase process of randomness extraction and expansion (the extract-expand
approach). In summary, given a (possibly low-entropy) bitstring, an HKDF pro-
duces an arbitrarily long pseudo random bitstring that is fit for cryptographic
purposes.

2 An Overview of BIP32-based HD Wallets

In this section, we give a brief overview of the BIP32 specification, and provide
a “full path” from mnemonic to key pair. To avoid repeating already well docu-
mented processes, the overview will refer to the specifications when appropriate.
In a final subsection, we will also overview how does all this apply to the Cardano
Lightwallet and Atala Prism cases.

2.1 Main Specifications: A Brief History of BIPs for Wallets

BIPs, or Bitcoin Improvement Proposals, are “standards” in the Bitcoin domain
that specify how concrete components of the ecosystem work and/or should
be implemented. Being Bitcoin the first blockchain, many others import these
standards.

In 2013, BIP32 was published. It defines an approach to HD wallets using a
tree structure in which each node can be associated to a key pair. It also defines
two ways to derive child nodes from parent nodes: one that allows, given a public
key of a node, to derive the public and private keys of all its descendants; and
another one that requires the private key for derivation of its child nodes. Based
on this child derivation processes, it also specifies a basic strategy for building
HD structures for payments.
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However, although BIP32 does specify a basic structure, it does not mandate
that it has to be followed. According to BIP433, published in 2014, this led to a
set of self-claimed BIP32-compliant wallets not to be compliant between them-
selves. BIP43 requires that the first level of child derivation (directly from the
root) be dedicated to define a “purpose”. BIP444, published simultaneously to
BIP43, further refines this, by establishing 6 different levels (which we introduce
in subsequent sections). Thus, BIP44 is an specialization of BIP43, which is itself
an specialization of BIP32.

Somehow orthoghonally to these, BIP39 defines how to encode random binary
seeds into mnemonic sentences, and back. In this manner, the root node of a
BIP44 wallet is decoded into a bitstring, from a mnemonic, using BIP39. Then,
this root node and its child nodes are computed as defined in BIP44. Table 1
summarizes the mentioned standards.

BIP Year Description

BIP32 2013 Basic structure and derivation rules for HD wallets.
BIP43 2014 Definition of “purpose” level.
BIP44 2014 Definition of 6-level structure (root, purpose, coin type, account, change, address.)
BIP32 2013 Encoding/decoding of bitstrings to/from mnemonic sentences.

Table 1. Summary of BIPs for HD wallets.

HD wallets that follow the BIP44 specification have to define a value of 44
(with hardened derivation; see next) at the “purpose” layer. Wallets following a
different structure, but still compatible with BIP32, can (should?) define their
own code, for the sake of ensuring compatibility across implementations. For
instance, Cardano defines the code 1852 (again, hardened derivation), as it has
some minor variations with respect to BIP44. There are several well-known wal-
lets that follow this specification. For instance, Trezor5, or Ledger6.

Additionally, Satoshi Labs SLIP44 maintains a registry of the different cryp-
tocurrencies that have “registered” codes for wallet specifications that follow
BIP44. That is, this registry contains codes for the “coin type” level of BIP44.
Examples of registered coins include Bitcoin mainnet and testnet, Litecoin, Car-
dano, Ether, and many others (currently, there are several hundreds).

3 https://github.com/bitcoin/bips/blob/master/bip-0043.mediawiki. Last ac-
cess, December 13th, 2021.

4 https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki. Last ac-
cess, December 13th, 2021.

5 https://docs.trezor.io/trezor-firmware/misc/coins-bip44-paths.html. Last
access, January 10th, 2022.

6 https://support.ledger.com/hc/en-us/articles/4404388633489-Export-your-accounts?

docs=true. Last access, January 10th, 2022.
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2.2 Main Concepts

HD wallet tree structure. HD wallets are organised as trees, where the root
node is directly derived from the main seed (typically, a mnemonic-encoded
random string). We denote the root level with level 0, and all descendants
with increasing numbers. A level other than the root level can have an arbi-
trary number of nodes.

(Child) Index. The child index just identifies how many childs can be (or have
been) created before the current child, at the current depth of the tree. We
assume 0 to be the first index.

Chaincode. To introduce extra “non-determinism” in the way child keys are
derived from parent keys, part of the pseudo-randomly derived data is used
as key for pseudo-random derivations of lower levels. This part of the derived
data is referred to as chaincode. We will denote the chaincode of the j-th
node at level i of the tree with ci,j . This data should be kept secret; otherwise,
entire subtrees can be compromised.

Extended keys. An extended public (resp. private) key is composed by the
public (resp. private) key and the chaincode.

Hardened child keys. A hardened child key can only be derived from the
parent private key, and the parent key chaincode.

Non-hardened child keys. A non-hardened child key can be derived both
from the parent private and parent public key, and the parent key chaincode.

Hardened vs non-hardened child derivation. Basically, child nodes are derived
as rerandomizations of their parent node private key. The pseudo-random data
used for rerandomization can be derived from the parent private extended key, or
from the parent public extended key. The former case is referred to as hardened
derivation, and the latter as non-hardened derivation. In a nutshell, this means
that hardened child keys (private or public) can only be derived from their parent
private key, but not from their parent public key. Naturally, child private keys
can only be derived from parent private keys.

For self-containedness, Fig. 1 shows the different algorithms to derive child
keys from a parent keys, excluding some details. For the full algorithms, we refer
to BIP32.

Isolation of HD wallet subtrees. In the following section, we use the concept
of isolated and non-isolated subtrees. This is something that is only indirectly
mentioned in the BIPs and other related works, but which is of crucial impor-
tance in order to limit the impact of compromised keys. Namely, assume that a
child key is derived in non-hardened mode. Then, if the extended parent public
key is leaked, as well as the private (non-extended) non-hardened child key, it is
possible to extract the parent private key – and, therefore, all the keys (private
and public; hardened or not) that derive from it. If child keys are derived in
hardened mode, this does not apply. For the sake of clarity, we illustrate the
difference through the diagram in Fig. 2.

For instance, assume that the extended public key (Ki,j , ci,j) is compromised,
along with its child private non-hardened key knh(i+1),t. Then, it is straightforward
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prv2HardChild // Parent private key → i-th Child hardened key pair

I ← HMAC(cpar, kpar, i)

kh ← (kpar + Left(I)) mod n;Kh ← khG; ch ← Right(I)

return (kh,Kh, ch)

prv2NonHardChild // Parent private key → i-th Child non-hardened key pair

I ← HMAC(cpar,Kpar, i)

knh ← (kpar + Left(I)) mod n;Knh ← knhG; cnh ← Right(I)

return (knh,Knh, cnh)

pub2NonhardPubChild // Parent public key → i-th Child non-hardened public key

I ← HMAC(cpar,Kpar, i)

Knh ← Left(I)G + Kpar; cnh ← Right(I)

return (Knh, cnh)

Fig. 1. Algorithms for child derivation. kpar,Kpar, cpar denote the parent’s public key,
private key, and chaincode, respectively. k,K, c denote the resulting child’s private
key, public key, and chaincode. h or nh superscripts denote hardened or non-hardened
derivation. Left (resp. Right) divides a bitstring in two equal parts, and takes the left
(resp. right) half. The result of both Left and Right can be interpreted as a scalar,
and thus multipled by points in the elliptic curve, such as G, which is the base point,
or public keys, which also are points in the curve.

to recompute the parent private key ki,j (independently on whether it was de-
rived in hardened mode or not) as: ki,j ← (Knh

(i+1),t − Left(Inh(i+1),t)) mod n.
Obviously, given the parent private key ki,j , it is straightforward to derive all its
descendants (hardened or not), as well as possibly and recursively apply the same
strategy, if the just recovered parent key was derived in non-hardened mode.

2.3 From Mnemonic to Key Pairs: High-level Overview

The following description is based on BIP39 for the processing of mnemonics,
and BIP44 (which is a restriction of BIP43 and BIP32) for general structure of
an HD wallet, which we depict in Fig. 3.

Path notation. As can be seen in Fig. 3, the hierarchical structure of an HD
wallet is defined in layers (or levels), where different indexes are used to derive
the cryptographic values associated to different nodes in a same layer, with the
exception of the root node (at layer 0), which is frequently just denoted with
an m, after master seed. Thus, for instance, paths m/1 and m/2 denote a tree
with two layer 1 nodes computed with index 1 and index 2, respectively. If a
child node index is primed, it means that hardened derivation is used (whereas
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Fig. 2. Sub-tree isolation through hardened child derivation. G is the base point of the
underlying elliptic curve, and n is the order of the associated group.

the absence of a prime means non-hardened derivation). More specifically, since
BIP44 wallets have up to layer 6, paths look like m/a’/b’/c’/d’/e/f. Note that
layers 1 to 3 are derived in hardened mode, and layers 4 and 5 are derived in
non-hardened mode.

From (pseudo-)random bitstrings to mnemonics, and back. Mnemonics encode
randomness in human-readable form. BIP39 is the main specification for this.
Roughly, between 128 and 256 random bits (in multiples of 32) are generated,
a checksum (the first few bits of a hash of these random bits) is concatenated,
and the result is divided in chunks of 11 bits. Each of these chunks is used as
index to a predefined dictionary of words. The result is a mnemonic of 12 to 24
words. To convert from mnemonic to random bits, just the inverse process has
to be followed (verifying the checksum).
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Fig. 3. Basic tree structure of a BIP44-based HD wallet.

Given the mnemonic, it is converted back into a bitstring as just described.
Then, this bitstring is processed with an HMAC function, using the string “Bit-
coin seed” as key based on SHA512 – hence producing 512 bits of output. The
first 256 bits are set as master secret key, and the last 256 bits as master chain-
code (i.e., k0,0 and c0,0, in our previous notation).

Layer 1: isolated subtrees per purpose The first layer of a BIP44-compatible
HD wallet is composed of up to 231 nodes of hardened childs: i.e., layer 1 is
composed of childs (1, 231) to (1, 262 − 1), where the second element in the pair
is the index i, whose value is used in the child derivation processes, and denotes
for what “purpose” the descendant keys will be used – this roughly translates to
the system (e.g., Bitcoin, Cardano... or even non-blockchain systems, in theory).

Note that, being layer 1 computed in hardened mode, a private key compro-
mise of one node in layer 1 does not affect the master node, nor other layer 1
siblings. Hence, this is an “isolated” subtree, according to our terminology.

For BIP44-compatible wallets, the expected value for the i index is 44, so all
paths begin with m/44’. Cardano, since the Shelley era, uses index 1852 (and
thus, Cardano paths begin with m/1852’7. Note that, since these are hardened
indexes, the encoding rules translate this into 1852 + 231 (resp. 44 + 231 for
BIP44); see BIP44 for more details.

7 https://cips.cardano.org/cips/cip1852/. Last access, December 14th, 2021.
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Layer 2: isolated subtrees per coin type The second layer is again composed
of up to 231 nodes of hardened childs: i.e., layer 2 is composed of childs (2, 231)
to (2, 262 − 1) per each child node of layer 1. In theory, up to 231 ∗ 231 = 262

second-level nodes can coexist in the same HD wallet. The aim of the second
level is for any HD wallet to be able to support multiple types of coins. E.g., so
that the same mnemonic can be used to derive key pairs for Bitcoin, Cardano,
etc.

Note that, being layer 2 computed in hardened mode, a private key compro-
mise of one node in layer 2 does not affect its parent in layer 1, nor other layer
2 siblings. Hence, this is an “isolated” subtree, according to our terminology.

Although not mandatory, each coin is expected to have an assigned coin type
index. The complete list of reserved indexes is available in SLIP448. For instance,
Cardano’s ADA has an index of 1815 in hardened mode – thus, its path prefix
is m/1852’/1815’.

Layer 3: isolated subtrees per account The third layer is again composed of up
to 231 nodes of hardened childs: i.e., layer 3 is composed of childs (3, 231) to
(3, 262−1) per each child node of layer 2. In theory, up to 23∗31 = 293 third-level
nodes can coexist in the same HD wallet. The aim of the third level is to allow
the HD wallet user to maintain many accounts per coin type. E.g., the same
mnemonic seed could be used for up to 231 key pairs for Cardano addresses.

Again, note that being layer 3 computed in hardened mode, a private key
compromise of one node in layer 3 does not affect its parent in layer 2, nor
other layer 3 siblings. Hence, this is an “isolated” subtree, according to our
terminology.

Layer 4: non-isolated subtrees per change According to BIP32, the fourth layer
can be composed of up to 231 nodes of non-hardened childs: i.e., layer 4 can be
composed of childs (4, 0) to (4, 231−1) per each child node of layer 3. However, in
BIP44, only non-hardened childs 0 and 1 are used: i.e., each node of layer 3 will
only have non-hardened childs (4, 0) and (4, 1). This layer is used to differentiate
whether the descendant nodes will be used as change addresses, or not. I.e.,
child (4, 0) will not be used for receiving change in payments, and therefore is
expected to be associated to an address that may be published outside of the
wallet; while child (4, 1) is expected to be used for receiving change in payments,
and will typically not be published outside of the transaction.

Note that, since nodes in layer 4 are not derived in hardened mode, if the
private key of a layer 4 node is compromised, along with the extended public
key of its layer 3 parent, then the entire subtree of that layer 3 node will be
compromised (but not the subtrees of other layer 3 nodes, as layer 3 is derived
in hardened mode). For example, take the derivation path of a layer 4 node to be
m/x’/y’/z’/0. If the private key of m/x’/y’/z’/0 is leaked to an attacker, who
also gains access to the extended public key (i.e., the public key and chaincode)

8 https://github.com/satoshilabs/slips/blob/master/slip-0044.md. Last ac-
cess, December 14th, 2021.
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of m/x’/y’/z’, then the attacker will be able to compute the extended private
(and public) keys of the sibling node m/x’/y’/z’/1. This is precisely the attack
explained in the last paragraph of Section 2.2.

Layer 5: non-isolated final key pairs (index) The fifth and last layer is used
to derive final key pairs. It can be composed of up to 231 non-hardened nodes:
i.e., every change (and non-change) node of level 4 may have level 5 childs from
(5, 0) to (5, 231 − 1).

Note that, since layer 4 nodes are derived in non-hardened mode, if a layer 5
private key is compromised, as well as its parent extended public key of layer 4,
then the whole layer 4 subtree will be compromised. Furthermore, if the layer 3
extended public key from which the layer 4 parent derives is also compromised,
the entire account will be compromised too, as layer 4 is also derived in non-
hardened mode.

2.4 Comments on a Recent Security Evaluation of BIP32 Wallets

Very recently, [2] was published in CCS’21, a major applied cryptography and
security conference. The paper builds on prior work from 2019 [3], and analyses
the security of BIP32-like wallets. For this purpose, the authors first model and
analyse (additively) re-randomizable signatures built on ECDSA. They prove se-
curity, as long as every message is signed at most once, at the cost of a security
loss proportional to the number of signature re-randomizations performed by
the adversary9. Then, they build a model for HD wallets, and provide a generic
construction using additively re-randomizable signatures. The properties consid-
ered in this HD wallet model are unlinkability and unforgeability (restricted to
only one signature per message). The unlinkability property expects that an ad-
versary cannot distinguish (uncompromised) keys derived from a non-hardened
node, from keys derived from keys derived from an independent master key. The
unforgeability property is the usual one, excluding the one message restriction
(which seems reasonable, as long as new randomness is included in every signed
message); namely, the adversary should not be able to create a valid signature
under a hardened key that has not been compromised, or a non-hardened key.

An interesting extension is mentioned, to achieve forward unlinkability in
case of compromise of non-hardened node public key and chaincode. Namely,
if that happens, the adversary will be able to derive the public extended keys
for all the subtree, which breaks unlinkability for the subtree. The proposal is
to keep a state along with every node. On every child derivation in the tree,
the state of the existing nodes is refreshed. Then, in case of compromise of a
node, the keys previously derived in subtrees of it are not affected (assuming
that previous states are securely erased).

Building on the proven security of the additively re-randomizable ECDSA,
they prove security of their generic construction, which now also depends on

9 They also prove this security loss to be unavoidable with additive re-randomization,
although I have not checked that proof.
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the number of leaked hardened keys. Assuming that roughly 1% of the total
number of (additively re-randomized) hardened keys are compromised, the esti-
mated security level for ECDSA of 256-bit keys (hence, 128-bit security) is 91-bit
security.

Discussion. The model does seem to follow BIP32, but assuming a hot/cold
approach. Concretely, they assume that non-hardened secret keys are always
kept in a cold wallet, and therefore cannot be compromised. On the other hand,
hardened secret keys are assumed not to be stored in cold wallets, and therefore
can be compromised (this is reflected in the model with corresponding oracles or
lack thereof). The underlying reasoning being that hardened derivation is used
to share keys with not fully trusted entities (e.g., employees in a company). Also,
hardened keys are assumed to be leafs (i.e., keys used directly for signing); or,
alternatively, roots of independent subtrees. Under this modelling, if the partially
trusted entity leaks the hardened key, this would only affect the security of its
subtree (if it exists), but certainly not siblings or ancestors. However, this may
not be fit for BIP44 wallets, where hardened derivation is expected to be used
directly for the first 3 layers, and the leaves are actually computed with non-
hardened derivation.

The property of forward unlinkability is interesting for identity-related wal-
lets.

3 IO Ecosystem Specifics

Lightwallet. HD wallets in Cardano are mostly BIP44-compatible wallets, with
the exception that the used elliptic curve is Ed25519, instead of Secp256k1, like
Bitcoin’s BIP32 (and thus, BIP44). This difference is marked by using index
1852 for hardened child derivation at layer 1 (purpose level), as specified in
CIP185210. Mnemonics in Cardano are composed by 24 words, and hence encode
256-bit random bitstrings.

Atala. HD wallets in Atala follow the same overall rules as in BIP32. Specifically,
the same distinction between hardened and non-hardened child derivation rules
are applied, as well as Secp256k1 as the elliptic curve, wich ECDSA as digital
signature scheme. However, Atala defines a different tree structure, with the
following layers, depicted also in Fig. 4:

Layer 0: Root. Encoded as/derived from a 12-word mnemonic.
Layer 1: DID Number. Obtained by hardened child derivation from the root.

Each node in this level corresponds to a different DID.
Layer 2: Key Type. Obtained by hardened child derivation from a layer 1

node. Currently, the Atala specification defines four types of keys: master
keys, issuing keys, communication keys, and authentication keys.

10 https://cips.cardano.org/cips/cip1852/. Last access, December 15th, 2021.
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Layer 3: Index. Obtained by hardened child derivation from a layer 2 node.
Each layer 2 node may have up to 231 child nodes, which are the leaves of
the tree.

See the key derivation document for details11. Mnemonics in Atala are com-
posed by 12 words, and hence encode 256-bit random bitstrings.

Fig. 4. Atala tree derivation structure.

Note on the different cryptographic choices. As stated, Cardano’s Lightwallet
CIP1852 follows a variation of BIP44 where the chosen singing algorithm is
EdDSA, which uses Ed25519 as elliptic curve; whereas Atala builds from BIP32,
thus employs ECDSA with a secp256k1 curve. The reason behind this difference
seems just circumstancial, and due to the fact that Atala started to build from a
different specification. From a cryptographic point of view, it is possible to unify
under the same curve, or to stick to different ones. In the latter case, however, we
must make sure that domain separation is correctly done: i.e., even if having a
sort of unified wallet derived from the same mnemonic, it should not be possible
to generate the same key to be used for payment purposes and identity purposes.
More detail on this is given in Section 3.1.

Other than the previous, either choice seems to have its pros and cons. On
the one hand, having both Cardano and Atala use the same curve would make
it possible to benefit from joint development efforts. Also, it would avoid pitfalls
such as using the same key in different curves, which can lead to security issues
as described next (however, this can also be avoided with proper domain sep-
aration). Also, Edwards curves (such as Ed25519) are, at least in theory, more
efficient. On the other hand, Secp256k1 is an standardized curve, which has

11 https://github.com/input-output-hk/atala-prism/blob/master/

prism-backend/docs/protocol/key-derivation.md. Last access December
15th, 2021. WARNING! Internal link!
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seen more implementation and optimization effort. This means that the better
theoretical efficiency of Ed25519 may somehow “mitigated” by more efficient
implementations in Secp256k1. Also, Secp256k1 probably has more availabil-
ity of implementations in different programming languages. In any case, this is
something that needs to be considered by the development/engineering teams.

Related effots. There seems to be an effort to analyse the security of wallets
that manage addresses combining payment and staking keys [6]. These wallets
are referred to as PoS wallets. The paper identifies a series of malleability at-
tacks, depending on how the addresses are derived from the associated staking
and payment keys. A core wallet functionality is proposed, and a base protocol
realizing that functionality is given. While the proposal seems to be somehow
compatible with BIP44 wallets, the proposal seems to be somehow orthogonal
to the way keys are derived – instead, they focus on how to generate addresses,
and check that produced/received addresses are correct.

3.1 Aspects to consider before unification

Next, we emphasize some concrete topics that would need to be considered from
an implementation/software-design point of view, prior to making Atala and
Cardano keys to be derived from a single mnemonic.

Domain separation when different cryptosystems is necessary. As mentioned,
Cardano uses EdDSA (which is based on Ed25519 curve), while Atala uses
ECDSA with Secp256k1. It is not a good idea12 to use the same key in dif-
ferent cryptosystems, nor for different curves, even though “structurally” it may
be possible (e.g., in EdDSA and ECDSA, private keys are 32-byte random num-
bers). However, this is easily avoidable by ensuring domain separation in the
key derivation functions that are applied on the common seed. This is an im-
portant concern on its own; yet, it should be addressed natively through the
considerations in the next paragraph.

Ensure a correct hierarchical key derivation strategy. We need to take into ac-
count what specific usage we expect from the wallets and, from there, define hi-
erarchical derivation rules that ensure security without disabling current utility.
Related to the previous paragraph, we should make sure that keys that are aimed
to be used in different cryptosystems, are derived in separate tree branches that
ensure domain separation. Or, since the Atala derivation path is shorter, than no
Atala derivation path can be a prefix of a Cardano derivation path. For instance,
according to the current specification, the derivation path m/1852’/1815’/0’

12 I have not been able to find a paper that describes some concrete related attack
or gives some impossibility result for proving security under this circumstance but,
at the least, it seems to be folklore knowledge. See Lindell’s answer at https://

crypto.stackexchange.com/a/54666/52362 for instance. [4,9] seem good references
to study this topic further, if needed.
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corresponds to account 0’ for Ada coins in CIP1852-compliant Cardano wallets.
In Atala, 1852’ could be a valid DID number and, while 1815’ is currently not a
valid key type, if, in the future it becomes so, then m/1852’/1815’/0’ would be
a valid derivation path in both Atala and Cardano – which could open an attack
vector. An easy fix would be to concatenate the master seed with some value C in
Cardano, and some distinct value A in Atala. The derivation paths would become
Cm’/1852’/1815’/... in Cardano, and Am’/... in Atala – hence, domain sepa-
ration would be ensured. Probably, many other alternatives exist, more suitable
from an engineering perspective (e.g., assigning Atala its own purpose level in
BIP44 wallets). But, whatever option is followed, domain separation should be
ensured.

On the mnemonic length. Atala uses 12-word mnemonics to encode the master
seed from which all keys are derived, while Cardano uses 24 words. According
to BIP39, 12 words encode 128-bits seeds, and 24 words encode 256-bit seeds.
These entropy bits are then subject to the extract-and-expand approach of the
HKDF used in BIP32 to produce pseudoranom bits that are computationally
indistinguishable from true random numbers13. The keys used by both Atala (for
ECDSA), and Cardano (for EdDSA), are thus securely derived pseudorandom
keys of 256 bits. For keys of 256 bits, both ECDSA and EdDSA are expected
to provide 128 bits of security against unforgeability attacks. Given this, and
assuming (like [2] does) that some keys will be compromised, there are two ways
to attack a wallet: by breaking security of the HKDF used to derive the keys;
or by breaking security of the wallet construction itself. Given this, on the one
hand, in [2]14, security of BIP32 wallets against unforgeability is estimated to
have a security loss of 37 bits over the underlying digital signature scheme (under
somewhat arbitrary estimations for a typical setting, like leaking about 1% of
roughly 220 produced keys). For 256-bit ECDSA keys, this translates to 91 bits
of security. On the other hand, even for 128-bit seeds (thus, with entropy at
most 128), breaking the security of the HMAC-based HKDF construction (that
would seem to affect the unlinkability property of BIP32 wallets, rather than
their unforgeability) would be harder than breaking the unforgeability property
of the BIP32 wallet, as per the results in [7]15. Given this, and lacking a more
detailed analysis, seeds of 12 words would appear to be enough for security,
strictly speaking. However, taking into account that we are aiming to combine
two wallets into one, it does not seem logical to reduce the overall security
of the wallet that uses 24-word mnemonics, as the unified wallet will use the

13 Note: only 256 of these bits are used to produce the final keys.
14 Important! Note that [2] is defined for ECDSA-based BIP32 wallets with a structure

slightly different from BIP44 wallets. Hence, its results may not translate to our
setting – and of course, neither to EdDSA-based BIP44 wallets.

15 According to the analysis in [7], the outputs of HMAC-based HKDFs are roughly
q2−m-close to uniform, where q in our setting would be 220 as per [2], and m is the
min-entropy of the randomness source (our mnemonic). Hence, for seeds (mnemon-
ics) of 128 bits of entropy, we can still expect the outputs to be ∼ 2−100-close to
uniform.
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same mnemonic to produce even more keys than what it was producing before.
Therefore, it seems advisable to increase the mnemonic length of Atala to 24
words, rather than reducing the length of Cardano to 12 words.

4 Discussion

From a theoretical point of view, it seems very reasonable to derive all keys, even
for different purposes (payments, staking, or identities) from the same mnemonic.
Section 3.1, listed a series of topics that should be taken into account prior to
unifying Cardano and Atala wallets under the same mnemonic, to avoid security
pitfalls. In addition to those, there are also some aspects that may need care-
ful consideration, as they may have impact in the overall security and privacy
properties of the wallet and related systems.

Malleability considerations when combining multiple attributes into one address.
Are the keys for the different purposes going to be used only in a standalone
manner? Or, rather, it can be expected that they are somehow encoded and
distributed jointly? The latter seems to be the case for PoS wallets, which are
expected to be used in the Cardano ecosystem. As pointed out by [6], naive
encoding of keys with different purposes, into a single address, may enable certain
(malleability) attacks.

Concrete differences in prior security analysis. The security analysis in [2]
(which is one of the main references used in this research spike) is on BIP32,
not BIP44. While BIP44 is actually a subset of BIP32, it further specifies it in
concrete ways that may alter the result of the analysis. For instance, [2] assumes
that non-hardened nodes are leaves of the tree (which, alternatively, can be seen
as roots in new trees). However, in BIP44 the leaves are non-hardened nodes,
and intermediate nodes are mostly hardened. Yet another possible source of dis-
crepancy is that the analysis assumes that non-hardened nodes are maintained
in a hot/cold wallet setting and, thus, the private keys cannot be compromised.
This assumption may not hold for all use cases, and that would change com-
pletely the security reasoning. If we want to determine the concrete security
level we want/need in some specific use cases that differ from the analysis of [2]
as mentioned above, a new model might be necessary.

Careful consideration of extra security properties. The main related work anal-
ysed so far16 study the security of either BIP32 wallets for payments, or PoS
wallets. The introduction of identity-related (frequently associated to actual peo-
ple) data may require additional properties, only mentioned in these works (or
not considered, as in the BIPs). For instance, some sort of forward security will
be very desirable. While, for the case of payments or staking, the impact of a
compromise (either of a leaf node – i.e., a key – or a complete subtree) can
be mitigated by prompt detection and transfer of funds to an uncompromised

16 BIP32, BIP44, [2] and, partially, [6].
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address, this may be harder for keys representing in some way real world identi-
ties. Most probably, the latter will frequently be long-lived keys, that also can, in
turn, be used to issue further identities (e.g., as in the case of identity providers).
Thus, the consequences of a compromise may be more cumbersome to address
(re-issuing credentials, distributing revocation lists, etc.) and, consequently, it
seems desirable to look for constructions that give some sort of guarantee about
the security of keys produced at time t′ < t, if a compromise happens at time t.

Also, it cannot be discarded that further desirable privacy or security prop-
erties arise, as we get more familiar with the targetted use cases.

Secure wallet storage. Currently, Atala has some basic support for encrypted
storage17, that basically allows storing and fetching data encrypted with a pub-
lic key owned by a user. Some secure storage proposals for cryptocurrency wallets
already exist, like Aries’s RFC005018 or, in a more generic sense, Identity Foun-
dation’s Confidential Storage19. However, a careful analysis would be needed
depending on the features we want to support (e.g., some sort of generic search
on encrypted data vs just specific types of search), and also the expected infras-
tructure (e.g., an oblivious centralized secure storage service vs multiple user-
owned devices that synchronize “automagically”). Although initially, these may
be highly orthogonal topics to the hierarchical derivation of cryptographic keys,
decissions in one domain may affect the other – e.g., if we are to implement some
sort of forward security mechanism in an identity wallet, how can we ensure that
proper re-encryption is done in a centralized oblivious secure storage system?

Trust registries. A core component of a decentralized identity system will be
one that lets parties, a priori unknown to each other, derive some sort of trust
based on the system itself. It is reasonable to expect that cryptographic keys
(in the shape of DIDs, or related notions) are used to identify parties in the
system, and assign them some sort of trust metric. As in the topic of secure
storage, this would initially seem an orthogonal issue. But some properties (like,
again, some notion of forward security), may require ad hoc updates of trust
registries in a coordinated manner with an identity wallet – which might have
some implications into the security analysis.
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A Appendix

A.1 Feedback Welcome

Are you aware of further challenges that may be worth looking into? Have some
feedback? Please, reach out to us:

– Jesus Diaz Vico (Atala Semantics team).
– Ezequiel Postan (Atala Semantics team).
– Tony Rose (Atala Head of Product).
– Bart Suichies (Atala Technical Director).

A.2 Further related work

There seems to be a growing body of related research, which is specially growing
lately (probably, due to the rise of cryptocurrencies). The following just includes
some of the main references for self-bookkeeping (besides [6] and [2], already
mentioned in earlier sections). Note that they, in turn, include references to
further related work.

– “Arcula: A Secure Hierarchical Deterministic Wallet for Multi-asset Blockchains”,
[8].

– “Simple, Efficient and Strongly KI-Secure Hierarchical Key Assignment Schemes”,
[5].

– “A Formal Treatment of Deterministic Wallets”, [3].
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